

Color Sleuth and the AP Create PT

How the Color Sleuth Project Meets the AP Create Performance Task Requirements

The Color Sleuth App, written as suggested in this lesson, is an example of a program that can meet the minimum
bar for the AP Create Performance Task. Here’s how.

Iterative Design Process (rows 2-3 of AP Create Task Scoring Guidelines) - for the AP you must discuss your
overall “incremental and iterative development process” as well as two points along the way where you saw an
opportunity, or some difficulty, that you worked out and it ended up in the final program.

Alexis and Michael’s discussion throughout the tutorial is an excellent example of working collaboratively to
iteratively write a program - they wrote in small parts, testing each part along the way, modifying it, or adding new
functionality. The realization to use a parameterized function is a good opportunity to talk about. And any time
they re-organized the code or changed their course of action is a response to some difficulty they were trying to
overcome.

Algorithms (rows 4-6) - For the AP you
need to show code of an algorithm that
includes two or more algorithms where at
least one of the included algorithms
contains mathematical or logical concepts.

For a program structured like Color Sleuth,
the main algorithm (or “parent”) and
included algorithms (“children”) will likely
be spread out across separate functions.
An example of a choice that could be
made along with arguments for the written
responses is shown in the diagram. Note:
the student would select all three of these
functions as the “algorithm”.

Abstraction (rows 7-8) - for the AP the
code must contain a student-written
abstraction that helps manage the
complexity of the program. The functions
in this program are strong evidence of
using abstraction to manage complexity in
the code.

A function with a parameter is often a good
one to choose because the fact that the
function has a parameter means that the
problem has been abstracted so it can
handle different types of input. checkCorrect(buttonId) and updateScore(amt)would be good choices
that you should be able to justify easily in the written responses about how they help manage complexity.

